



# Zero-Shot Edge Detection with SCESAME: Spectral Clustering-based Ensemble for Segment Anything Model Estimation





<u>Hiroaki Yamagiwa</u><sup>1,2</sup>, Yusuke Takase<sup>1</sup>, Hiroyuki Kambe<sup>2</sup>, Ryosuke Nakamoto<sup>1,2</sup>

<sup>1</sup>Kyoto University, <sup>2</sup>Rist Inc.

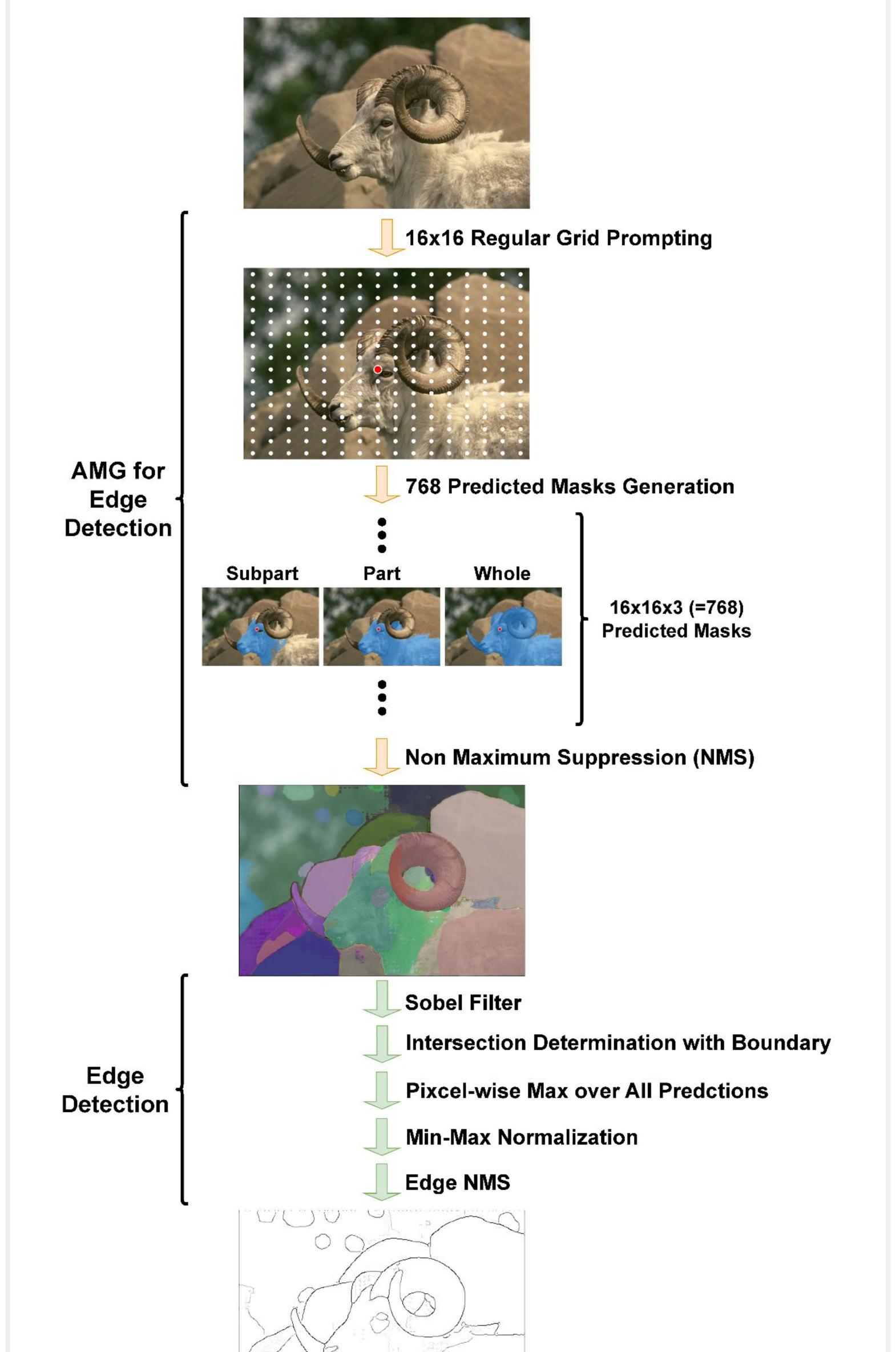
2nd Workshop on Pretraining - January 7, 2024 - at WACV 2024

Background

**SAM** can be used for edge detection, but suffers from the problem of **over-detecting edges**.

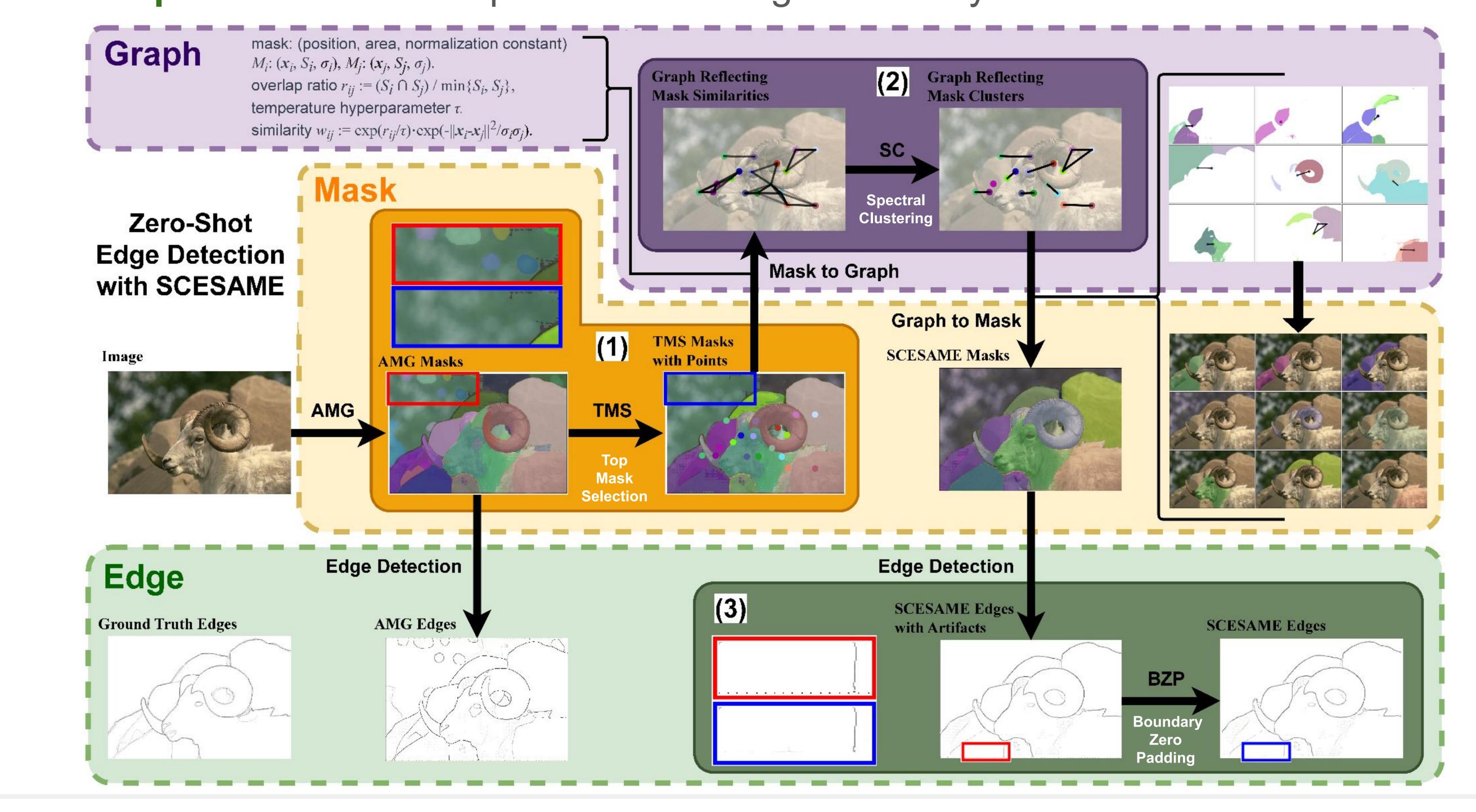
Method

(1) eliminate small masks, (2) combine masks, and (3) remove artifacts after edge detection.


Results

- Our method performs better than SAM.
- Our method comes close to human performance.

# Image AMG Masks SCESAME Masks (Ours) Ground Truth Edges AMG Edges SCESAME Edges (Ourse of the first of the fi


# Background

- Segment Anything Model (SAM) can generate masks for the entire image in zero-shot using Automatic Mask Generation (AMG).
- Edge detection with AMG over-detects edges.



# Method: Edge Detection with SCESAME Overcomes the Problem by Three Steps

- 1. TMS: Sort the AMG masks by size and eliminate small masks.
- 2. SC: Generate new masks by combining the remaining masks.
- 3. BZP: Fill pixels within a few pixels of the image boundary with zeros.



### Results: Edge Detection Experiments on BSDS500 and NYUDv2

### BSDS500 (left)

- It outperforms most CNN-based methods from 7-8 years ago.
- It also comes close to human performance.

## NYUDv2 (right)

It performs almost as well as recent CNN-based methods.

- Our method performs better than SAM.
- There is still a gap compared to SOTA.

| Method         |                       | Pub.'Year                               | ODS   | OIS   | AP    |
|----------------|-----------------------|-----------------------------------------|-------|-------|-------|
| Human [25]     |                       | ICLR'16                                 | 0.803 | -     | -     |
| Traditional    | Canny [7]             | PAMI'86                                 | 0.600 | 0.640 | 0.580 |
|                | Felz-Hutt [15]        | IJCV'04                                 | 0.610 | 0.640 | 0.560 |
|                | gPb-owt-ucm [1]       | PAMI'10                                 | 0.726 | 0.757 | 0.696 |
|                | SCG [41]              | NeurIPS'12                              | 0.739 | 0.758 | 0.773 |
|                | Sketch Tokens [27]    | CVPR'13                                 | 0.727 | 0.746 | 0.780 |
|                | PMI [21]              | ECCV'14                                 | 0.741 | 0.769 | 0.799 |
|                | SE [12]               | PAMI'14                                 | 0.746 | 0.767 | 0.803 |
|                | OEF [18]              | CVPR'15                                 | 0.746 | 0.770 | 0.820 |
|                | MES [44]              | ICCV'15                                 | 0.756 | 0.776 | 0.756 |
| 8-Year-Old CNN | DeepEdge [2]          | CVPR'15                                 | 0.753 | 0.772 | 0.807 |
|                | CSCNN [20]            | ArXiv'15                                | 0.756 | 0.775 | 0.798 |
|                | MSC [45]              | PAMI'15                                 | 0.756 | 0.776 | 0.787 |
|                | DeepContour [42]      | CVPR'15                                 | 0.757 | 0.776 | 0.800 |
|                | HFL [3]               | ICCV'15                                 | 0.767 | 0.788 | 0.795 |
| ea             | HED [50]              | ICCV'15                                 | 0.788 | 0.808 | 0.840 |
| Y              | Deep Boundary [25]    | ICLR'16                                 | 0.813 | 0.831 | 0.866 |
| to 8           | CEDN [53]             | CVPR'16                                 | 0.788 | 0.804 | -     |
| 7 t            | RDS [31]              | CVPR'16                                 | 0.792 | 0.810 | 0.818 |
|                | COB [32]              | ECCV'16                                 | 0.793 | 0.820 | 0.859 |
| SAM            | SAM [23]              | ICCV'23                                 | 0.768 | 0.786 | 0.794 |
|                | SAM [23] (Recalc.)    | ICCV'23                                 | 0.730 | 0.754 | 0.729 |
|                | SAM-p5 (Our Baseline) | -                                       | 0.754 | 0.779 | 0.763 |
|                | SCESAME-t2c2p5        |                                         | 0.796 | 0.812 | 0.780 |
| Ours           | SCESAME-t2c3p5        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.797 | 0.811 | 0.768 |
| Ŏ              | SCESAME-t3c2p5        | _                                       | 0.800 | 0.814 | 0.773 |
|                | SCESAME-t3c3p5        |                                         | 0.796 | 0.809 | 0.753 |
| SOTA           | EDTER-MS [37]         | CVPR'22                                 | 0.840 | 0.858 | 0.896 |
|                | EDTER-MS-VOC [37]     | CVPR'22                                 | 0.848 | 0.865 | 0.903 |
|                | UAED-MS [58]          | CVPR'23                                 | 0.837 | 0.855 | 0.897 |
|                | UAED-MS-VOC [58]      | CVPR'23                                 | 0.844 | 0.864 | 0.905 |

| Method                                                                                       | Pub.'Year                                                      | ODS                                                         | OIS                                                                              | AP                                      |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|
| gPb-ucm [1] Silberman et al. [43] gPb+NG [16] SE [12] SE+NG+ [17] OEF [18]                   | PAMI'11<br>ECCV'12<br>CVPR'13<br>PAMI'14<br>ECCV'14<br>CVPR'15 | 0.632<br>0.658<br>0.687<br>0.695<br>0.706<br>0.651          | 0.661<br>0.661<br>0.716<br>0.708<br>0.734<br>0.667                               | 0.562<br>0.629<br>0.679<br><b>0.738</b> |
| SemiContour [57]   HED [50]   RCF [30]   AMH-Net [51]   LPCB [10]   BDCN [19]   PiDiNet [46] | ICCV'15 CVPR'17 NeurIPS'17 ECCV'18 CVPR'19 ICCV'21             | 0.680<br>0.720<br>0.729<br>0.744<br>0.739<br>0.748<br>0.733 | 0.700<br>0.734<br>0.742<br><b>0.758</b><br><b>0.754</b><br><b>0.763</b><br>0.747 | 0.690<br>0.734<br>0.765<br>-<br>0.770   |
| SAM-p5 (Our Baseline)<br>SCESAME-t3c2p5 (Ours)                                               | -                                                              | 0.699<br>0.742                                              | 0.719<br><b>0.754</b>                                                            | 0.707<br>0.707                          |
| EDTER [37] (SOTA)                                                                            | CVPR'22                                                        | 0.774                                                       | 0.789                                                                            | 0.797                                   |

The best three results, excluding SOTA methods, are highlighted in red, blue, and purple.